skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Westling, Ted"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 13, 2026
  2. In this article, we study nonparametric inference for a covariate-adjusted regression function. This parameter captures the average association between a continuous exposure and an outcome after adjusting for other covariates. Under certain causal conditions, it also corresponds to the average outcome had all units been assigned to a specific exposure level, known as the causal dose–response curve. We propose a debiased local linear estimator of the covariate-adjusted regression function and demonstrate that our estimator converges pointwise to a mean-zero normal limit distribution. We use this result to construct asymptotically valid confidence intervals for function values and differences thereof. In addition, we use approximation results for the distribution of the supremum of an empirical process to construct asymptotically valid uniform confidence bands. Our methods do not require undersmoothing, permit the use of data-adaptive estimators of nuisance functions, and our estimator attains the optimal rate of convergence for a twice differentiable regression function. We illustrate the practical performance of our estimator using numerical studies and an analysis of the effect of air pollution exposure on cardiovascular mortality. 
    more » « less
  3. Prior work applying semiparametric theory to causal inference has primarily focused on deriving estimators that exhibit statistical robustness under a prespecified causal model that permits identification of a desired causal parameter. However, a fundamental challenge is correct specification of such a model, which usually involves making untestable assumptions. Evidence factors is an approach to combining hypothesis tests of a common causal null hypothesis under two or more candidate causal models. Under certain conditions, this yields a test that is valid if at least one of the underlying models is correct, which is a form of causal robustness. We propose a method of combining semiparametric theory with evidence factors. We develop a causal null hypothesis test based on joint asymptotic normality of K asymptotically linear semiparametric estimators, where each estimator is based on a distinct identifying functional derived from each of K candidate causal models. We show that this test provides both statistical and causal robustness in the sense that it is valid if at least one of the K proposed causal models is correct, while also allowing for slower than parametric rates of convergence in estimating nuisance functions. We demonstrate the effectiveness of our method via simulations and applications to the Framingham Heart Study and Wisconsin Longitudinal Study. 
    more » « less
  4. Prior work applying semiparametric theory to causal inference has primarily focused on deriving estimators that exhibit statistical robustness under a prespecified causal model that permits identification of a desired causal parameter. However, a fundamental challenge is correct specification of such a model, which usually involves making untestable assumptions. Evidence factors is an approach to combining hypothesis tests of a common causal null hypothesis under two or more candidate causal models. Under certain conditions, this yields a test that is valid if at least one of the underlying models is correct, which is a form of causal robustness. We propose a method of combining semiparametric theory with evidence factors. We develop a causal null hypothesis test based on joint asymptotic normality of asymptotically linear semiparametric estimators, where each estimator is based on a distinct identifying functional derived from each of candidate causal models. We show that this test provides both statistical and causal robustness in the sense that it is valid if at least one of the proposed causal models is correct, while also allowing for slower than parametric rates of convergence in estimating nuisance functions. We demonstrate the effectiveness of our method via simulations and applications to the Framingham Heart Study and Wisconsin Longitudinal Study. 
    more » « less
  5. In the absence of data from a randomized trial, researchers may aim to use observational data to draw causal inference about the effect of a treatment on a time-to-event outcome. In this context, interest often focuses on the treatment-specific survival curves, that is, the survival curves were the population under study to be assigned to receive the treatment or not. Under certain conditions, including that all confounders of the treatment-outcome relationship are observed, the treatment-specific survival curve can be identified with a covariate-adjusted survival curve. In this article, we propose a novel cross-fitted doubly-robust estimator that incorporates data-adaptive (e.g. machine learning) estimators of the conditional survival functions. We establish conditions on the nuisance estimators under which our estimator is consistent and asymptotically linear, both pointwise and uniformly in time. We also propose a novel ensemble learner for combining multiple candidate estimators of the conditional survival estimators. Notably, our methods and results accommodate events occurring in discrete or continuous time, or an arbitrary mix of the two. We investigate the practical performance of our methods using numerical studies and an application to the effect of a surgical treatment to prevent metastases of parotid carcinoma on mortality. 
    more » « less
  6. The clustered observational study (COS) design is the observational counterpart to the clustered randomized trial. COSs are common in both education and health services research. In education, treatments may be given to all students within some schools but withheld from all students in other schools. In health studies, treatments may be applied to clusters such as hospitals or groups of patients treated by the same physician. In this paper, we study the identification of causal effects in COS designs. We focus on the prospect of differential selection of units to clusters, which occurs when the units’ cluster selections depend on the clusters’ treatment assignments. Extant work on COSs has made an implicit assumption that rules out the presence of differential selection. We derive the identification results for designs with differential selection and that contexts with differential cluster selection require different adjustment sets than standard designs. We outline estimators for designs with and without differential selection. Using a series of simulations, we outline the magnitude of the bias that can occur with differential selection. We then present 2 empirical applications focusing on the likelihood of differential selection. 
    more » « less
  7. The ratio of the hazard functions of two populations or two strata of a single population plays an important role in time-to-event analysis. Cox regression is commonly used to estimate the hazard ratio under the assumption that it is constant in time, which is known as the proportional hazards assumption. However, this assumption is often violated in practice, and when it is violated, the parameter estimated by Cox regression is difficult to interpret. The hazard ratio can be estimated in a nonparametric manner using smoothing, but smoothing-based estimators are sensitive to the selection of tuning parameters, and it is often difficult to perform valid inference with such estimators. In some cases, it is known that the hazard ratio function is monotone. In this article, we demonstrate that monotonicity of the hazard ratio function defines an invariant stochastic order, and we study the properties of this order. Furthermore, we introduce an estimator of the hazard ratio function under a monotonicity constraint. We demonstrate that our estimator converges in distribution to a mean-zero limit, and we use this result to construct asymptotically valid confidence intervals. Finally, we conduct numerical studies to assess the finite-sample behavior of our estimator, and we use our methods to estimate the hazard ratio of progression-free survival in pulmonary adenocarcinoma patients treated with gefitinib or carboplatin-paclitaxel. 
    more » « less